top of page
Several Open Books

PUBLICATIONS ARCHIVE

Journal Publications

[1] A. Esmailiyan, E. Blokhina, D. Andrade-Miceli, E. Faust, P. Giounanlis, D. Leipold, H.Wang, I. Bashir, E. Koskin, T. Siriburanon, and R. B. Staszewski, “An On-Chip Picoampere-Level Leakage Current Sensor for Quantum Processors in 22-nm FD-SOI CMOS”, IEEE Trans. on Circuits and Systems I (TCAS-I), vol. 99, pp. 1–5, 26 Dec. 2023. DOI: 10.1109/TCSII.2022.3231568. [IEEE Xplore link (Open Access)] (pre-published)

 

[2] R. B. Staszewski, A. Esmailiyan, H. Wang, E. Koskin, P. Giounanlis, X. Wu, A. Koziol, A. Sokolov, I. Bashir, M. Asker, D. Leipold, R. Nikandish, T. Siriburanon, and E. Blokhina, “Cryogenic Controller for Electrostatically Controlled Quantum Dots in 22-nm Quantum SoC”, IEEE Open Journal of Solid-State Circuits Society (OJ-SSCS), vol. 2, pp. 103–121, 10 Oct. 2022. DOI:10.1109/OJSSCS.2022.3213528. [IEEE Xplore link (Open Access)]

 

​[3] N. Petropolous, R. B. Staszewski, D. Leipold, and E. Blokhina, “Topological order detection and qubit encoding in Su-Schrieffer-Heeger type quantum dot arrays ,” Journal of Applied Physics, 131, 074401 (2022), vol. 131, pp. 1–15, 18 Feb 2022. DOI: 10.1063/5.0082214. [AIP link (Open Access)]

 

[4] R. Nikandish, E. Blokhina, D. Leipold and R. B. Staszewski, “Semiconductor Quantum Computing: Toward a CMOS quantum computer on chip,” in IEEE Nanotechnology Magazine, vol. 15, no. 6, pp. 8-20, Dec. 2021, DOI: 10.1109/MNANO.2021.3113216. [IEEE Xplore link]

 

[5] I. Bashir, D. Leipold, M. Asker, A. Esmailiyan, E. Blokhina, D. Redmond, P. Giounanlis, D. Andrade-Miceli, and R. B. Staszewski, “Bias generation and calibration of CMOS charge qubits at 3.5 kelvin in 22-nm FDSOI,” Proc. of IEEE European Solid-State Circuits Conf. (ESSCIRC), sec. A5L-6, pp. 47–50, 14 Sept. 2021, Grenoble, France (remote). DOI: 10.1109/ESSCIRC53450.2021.9567784. [IEEE Xplore link]

 

[6] E. Blokhina, A. Sokolov, P. Giounanlis, X. Wu, I. Bashir, D. Leipold, R. B. Staszewski, A. Brambilla, and F. Bizzarri, “Towards the co-simulation of charge qubits: a methodology grounding on an equivalent circuit representation,” IEEE Open Journal of Circuits and Systems (OJCAS), vol. 2, pp. 548-563, 13 Sept. 2021. DOI: 10.1109/OJCAS.2021.3105005. [IEEE Xplore link (Open Access)]

 

[7] R. B. Staszewski, I. Bashir, E. Blokhina, and D. Leipold, “Cryo-CMOS for quantum system on-chip integration: Quantum computing as the development driver,” IEEE Solid-State Circuits (SSC) Magazine, vol. 13, no. 2, pp. 46–53, Spring 2021. DOI: 10.1109/MSSC.2021.3072807. [IEEE Xplore link]

 

[8] P. Giounanlis, X. Wu, A. Sokolov, N. Petropoulos, E. Koskin, I. Bashir, D. Leipold, R. B. Staszewski and E. Blokhina, “CMOS charge qubits and qudits: entanglement entropy and mutual information as an optimization method to construct CNOT and SWAP gates”, IOP Semiconductor Science and Technology, 11th Feb 2021. DOI: 10.1088/1361-6641/abe550. [IOP (Open Access)]

 

​[9] A. Esmailiyan, H. Wang, M. Asker, E. Koskin, D. Leipold, I. Bashir, K. Xu, A. Koziol, E. Blokhina and R. B. Staszewski, “A Fully Integrated DAC for CMOS Position-Based Charge Qubits with Single-Electron Detector Loopback Testing”, IEEE Solid-State Circuits Letters (SSC-L), vol. 3, pp. 1–4, 24 Aug. 2020. DOI:10.1109/LSSC.2020.3018707. [IEEE Xplore link (Open Access)]

 

[10] I. Bashir, E. Blokhina, A. Esmailiyan, D. Leipold, M. Asker, E. Koskin, P. Giounanlis, H. Wang, D. Andrade-Miceli, A. Sokolov, A. Koziol, T. Siriburanon and R. B. Staszewski, “A Single-Electron Injection Device for CMOS Charge Qubits Implemented in 22 nm FD-SOI”, IEEE Solid-State Circuits Letters (SSC-L), vol. 3, pp. 206–209, 21 Jul. 2020. DOI: 10.1109/LSSC.2020.3010822. [IEEE Xplore link (Open Access)]

​​

​​​​​​[11] E. Blokhina, P. Giounanlis, A. Mitchell, D. Leipold and R. B. Staszewski, “CMOS position-based charge qubits: theoretical analysis of control and entanglement,” IEEE Access, vol. 8, pp. 4182–4197, Dec. 2019. DOI: 10.1109/ACCESS.2019.2960684. [IEEE Xplore link (Open Access)]

​​

[12] P. Giounanlis, E. Blokhina, D. Leipold and R. B. Staszewski, “Photon enhanced interaction and entanglement in semiconductor position-based qubits” , MDPI Applied Sciences, Special Issue in Optics for AI and AI for Optics, 9(21), 4534, pp. 1–15, 25 Oct. 2019. DOI: 10.3390/app9214534. [MDPI Special Issue link] [MDPI link (Open Access)]

​​

[13] P. Giounanlis, E. Blokhina, K. Pomorski, D. Leipold and R. B. Staszewski, “Modeling of semiconductor electrostatic qubits realized through coupled quantum dots” , IEEE Access, vol. 7, pp. 49262–49278, April. 2019. DOI: 10.1109/ACCESS.2019.2909489. [IEEE Xplore link (Open Access)]

​​

Conference Publications

[1] C. Power, D. Andrade-Miceli, I. Bashir, M. Asker, D. Leipold, R. B. Staszewski, and E. Blokhina, “Modelling of Electron Injection and Confinement in Cryogenic 22-nm FD-SOI Quantum Dot Arrays,” Proc. of 29th IEEE International Conf. on Electronics Circuits and Systems (ICECS), 26 Oct. 2022, pp. 1–4, Glasgow, UK. DOI: 10.1109/ICECS202256217.2022.9971046. [IEEE Xplore link]

​

[2] X. Wu, P. Giounanlis, E. Blokhina, and R. B. Staszewski, “Control of Quantum Systems: Comparison of Different Techniques by the Example of Charge and Spin Semiconductor Qubits,” Proc. of 29th IEEE International Conf. on Electronics Circuits and Systems (ICECS), 26 Oct. 2022, pp. 1–4, Glasgow, UK. DOI: 10.1109/ICECS202256217.2022.9970925. [IEEE Xplore link]

​

[3] D. Andrade-Miceli, C. Power, A. Esmailiyan, T. Siriburanon, I. Bashir, M. Asker, D. Leipold, R. B. Staszewski, and E. Blokhina, “Characterisation and Modelling of 22-nm FD-SOI Transistors Operating at Cryogenic Temperatures,” Proc. of 29th IEEE International Conf. on Electronics Circuits and Systems (ICECS), 26 Oct. 2022, pp. 1–4, Glasgow, UK. DOI: 10.1109/ICECS202256217.2022.9970969. [IEEE Xplore link]

​

[4] C. Power, R. B. Staszewski, and E. Blokhina, “Cryogenic Transistor Confinement Well Simulation Through Material and Carrier Transport Decoupling,” Proc. of 29th IEEE International Conf. on Electronics Circuits and Systems (ICECS), 25 Oct. 2022, poster 35, pp. 1–2, Glasgow, UK. DOI: 10.1109/ICECS202256217.2022.9970779. [IEEE Xplore link]

​

[5] D. Andrade-Miceli, A. Esmailiyan, P. Bislaux, E. Blokhina, T. Siriburanon, I. Bashir, M. Asker, D. Leipold,  R. B. Staszewski, “Cryogenic low-drop-out regulators fully integrated with quantum dot array in 22-nm FD-SOI CMOS,” 2021 IEEE MTT-S International Microwave Symposium (IMS), pp. 635-637 June. 2021, Atlanta, Georgia USA. DOI: 10.1109/IMS19712.2021.9574910. [IEEE Xplore link]

​

[6] I. Bashir, D. Leipold, M. Asker, A. Esmailiyan, H. Wang, T. Siriburanon, P. Giounanlis, A. Koziol, E. Blokhina and R. B. Staszewski, “RF clock distribution system for a scalable quantum processor in 22-nm FDSOI operating at 3.8K cryo-genic temperature,” Proc. of IEEE Radio Frequency Integrated Circuits (RFIC) Symp., sec. Mo4A-4, pp. 1–4, 4–6 Aug. 2020, Los Angeles, CA, USA. [Conference link]

​

[7] R. B. Staszewski, P. Giounanlis, A. Esmailiyan, H. Wang, I. Bashir, C. Cetintepe, D. Andrade-Miceli, M. Asker, D. Leipold, T. Siriburanon, A. Sokolov and E. Blokhina, “Position-based CMOS charge qubits for scalable quantum processors at 4K,” Proc. of IEEE Intl. Symp. on Circuits and Systems (ISCAS), paper 2595, sec. B2L-H, pp. 1–5, 11–14 Oct. 2020, Seville, Spain. DOI: 10.1109/ISCAS45731.2020.9180789. [IEEE Xplore link]

​

[8] P. Giounanlis, A. Sokolov, E. Blokhina, I. Bashir, D. Leipold and R. B. Staszewski, “Electrostatic control and entanglement of CMOS position-based qubits,” Proc. of IEEE Intl. Symp. on Circuits and Systems (ISCAS), paper 1980, sec. B1L-H, pp. 1–5, 11–14 Oct. 2020, Seville, Spain. DOI: 10.1109/ISCAS45731.2020.9180721. [IEEE Xplore link]

​

[9] A. Sokolov, D. Mishagli, P. Giounanlis, I. Bashir, D. Leipold, E. Koskin, R. B. Staszewski and E. Blokhina, “Simulation Methodology for Electron Transfer in CMOS Quantum Dots” , International Conference on Computational Science (ICCS), in Proc. of Springer Lecture Notes in Computer Science (LNCS) Series, 10 June 2020, paper 331, pp. 1–14, Amsterdam, The Netherlands. DOI: https://doi.org/10.1007/978-3-030-50433-5 50. [DOI link] [Springer link]

​

[10] P. Giounanlis, E. Blokhina, I. Bashir, D. Leipold, M. Asker and R. B. Staszewski, “A Python-Verilog toolbox for modeling of a Hadamard gate based on position-based CMOS qubits” , Proc. of 26th IEEE International Conf. on Electronics Circuits and Systems (ICECS), 29 Nov. 2019, ses. C1P-F, pp. 1–4, Genova, Italy. DOI: 10.1109/ICECS46596.2019.8965149. [IEEE Xplore link]

​

[11] I. Bashir, M. Asker, C. Cetintepe, D. Leipold, A. Esmailiyan, H. Wang, T. Siriburanon, P. Giounanlis, E. Blokhina, K. Pomorski and R. B. Staszewski, “A mixed-signal control core for a fully integrated semiconductor quantum computer system-on-chip” , Proc. of IEEE European Solid-State Circuits Conf. (ESSCIRC), sec. A2L-C4, pp. 125–128, 24 Sept. 2019, Krakow, Poland. DOI:RC.2019.8902885. [IEEE Xplore link]

​

[12] I. Bashir, P. Giounanlis, E. Blokhina, D. Leipold, K. Pomorski and R. B. Staszewski, “A Verilog-A model of the shuttle of an electron in a two quantum-dot system” , Proc. of 17th IEEE International NEWCAS Conf. (NEWCAS), 25 Jun. 2019, ses. B1P-C3, pp. 1–4, Munich, Germany. DOI: 10.1109/NEWCAS44328.2019.8961307. [IEEE Xplore link]

​

​

​

Conference Presentations

[1] I. Bashir, D. Leipold, E. Blokhina, M. Asker, A. Sokolov, P. Bisiaux, X. Wu, C. Mcgeough, P. Giounanlis, C. Power, D. Miceli, E. O’Shea, B. Barry, “Characterization of Silicon based Spin qubits in a 22nm Commercial FDSOI Process“, American Physical Society (APS) Meeting, 9 Mar. 2023, ses. S74.12, pp. 1–1, Las Vegas, Nevada, USA. [Forum link] [Slides link]

​

[2] I. Bashir, D. Leipold, M. Asker, E. Blokhina, D. Redmond, B. Staszewski, A. Esmailiyan, P. Giounanlis, D. Andrademiceli, A. Sokolov, X. Wu, “A 22nm FD-SOI-CMOS scalable quantum processor SoC with fully integrated control electronics at 3.5K,” American Physical Society (APS) Meeting, 17 Mar. 2021, ses. M30.7, pp. 1–1, USA (remote). [Forum link]

​

[3] P. Giounanlis, E. Blokhina, A. Sokolov, E. Koskin, I. Bashir, D. Leipold, M. Asker, A. Esmailian, H. Wang, C. Cetintepe, and R. Staszewski, “Electrostatic control and entanglement of silicon qubits in 22nm FDSOI process,” Quantum Technology International Conference (QTech), pp. 1–1, 2 Nov. 2020, Barcelona, Spain (remote). [Conference link]

​

[4] E. Blokhina, P. Giounanlis, D. Leipold, I. Bashir, M. Asker, A. Esmailiyan, H. Wang, T. Siriburanon, A. Sokolov and R. Staszewski, “Charge and Hybrid Qubits in 22nm FDSOI process” , American Physical Society (APS) Meeting, 6 Mar. 2020, ses. X17.13, pp. 1–1, Denver, Colorado, USA. [Meeting link]

​

[5] D. Leipold, H. Leipold, L. Leipold, E. Blokhina, P. Giounanlis, K. Pomorski, R. Staszewski, I. Bashir, G. Maxim, M. Asker, C. Cetintepe, A. Esmailiyan, H. Wang and T. Siriburanon, “Implementation and Simulation of Electrostatically Controlled Quantum Dots in CMOS Technology”, American Physical Society (APS) Meeting, 6 Mar. 2019, ses. P35.12, pp. 1–1, Boston, Massachusetts, USA. [Meeting link]

​

bottom of page